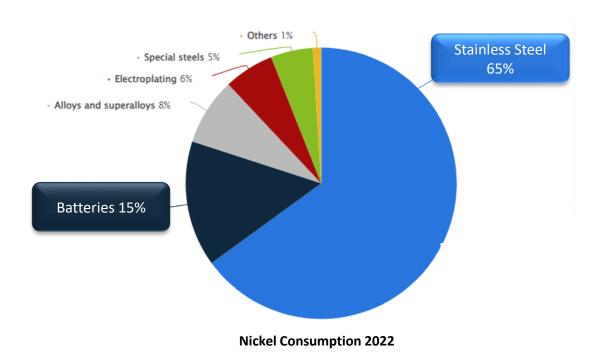
CONFIDENTIAL

NICKEL ACID LEACHING PROCESSING PLANT PROJECT In Central Sulawesi, Indonesia

PROJECT INFORMATION MEMORANDUM

Presented to

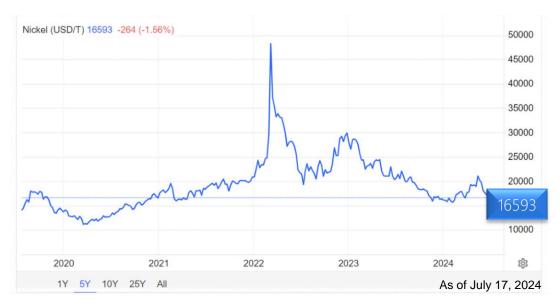
PT. Burmi Persada Surya Pratama


by Usep Hidayat

PROJECT BACKGROUND

Nickel Market Insight and Prospect

- The global nickel market size was estimated at USD 33.05 billion in 2022 and is projected to grow at a compound annual growth rate (CAGR) of 7.98% from 2022 to 2028
- Nickel Market Trends/Drivers:
 - Growing demand in the stainless steel industry
 - Increasing adoption of EVs and nickel-rich batteries
 - Infrastructure development and urbanization
- Supply Issues:
 - Nickel production significantly increased recently, but supply uncertainties remain due to environmental regulation and political instability
- Price Volatility:
 - Nickel prices are highly volatile due to market demand
 - Supply imbalances, speculative trading, and unstable global economic conditions


Long-term demand for stable and reliable nickel production & supply continues in the market

PROJECT BACKGROUND

Nickel Price Forecast (2024-2050)

- Overall, the outlook for nickel prices is bullish over the next several decades. The price is expected to double by 2050 from the current forecast for 2024, which is around \$16,800 according to ING think tank.
- Fluctuations are expected to continue around \$16,000-17,000 in 2025, with prices potentially ranging between \$20,000 and \$30,000 by 2030-2040, mainly driven by the anticipated rise in EV battery demand.
- Beyond 2040, while projections are speculative, if current trends continue as EV adoption is expected to become more widespread, nickel prices could potentially exceed \$30,000.
 Still, if alternative battery technologies gain prominence, prices might stabilize or grow at a slower rate than expected.

LME Nickel Price 2020-2024

Conclusion:

Throughout the 20 years of operation after commissioning, the nickel prices in the market are expected to remain well above **\$14,000**, which is the price assumption used for the financial analysis of the proposed project.

PROJECT OVERVIEW

Project Summary

Laterite Ore Supply

Project Name : Nickel Atmospheric Acid Leaching Processing Plant

Project in Central Sulawesi, Indonesia

Developer :PT. Industri Nikel Hidroksida (INH) and

PT. Burmi Persada Surya Pratama (BPSP)

Site Location :Central Sulawesi Province, Indonesia

Project Site Area :12ha (2ha for facilities and 10ha for ore stockpile area)

- Land clearing in progress

Accessibility : Strategic location with connectivity

- National road access

- Jetty (10km)

- Water source for operation from a river near the site

- Airport (10km)

:Approx. 214.000 ha with 135 registered IUP (100km)

PROJECT OVERVIEW

Project Summary (Cont'd)

Production Capacity

Input Capacity

Technology

EPCC

Operation

Plant Unit Installed

: 4,000 MTPA (as Ni 99% Base) | ± 6,320 MTPA (as Ni (OH)₂)

- By-products: MgO (69,487 MTPA) / Iron Oxide (85,187 MTPA) / Silica (127,260 MTPA)

: Laterite Nickel Ore (Ni ± 1.3%) 435,800 MTPA (Wet Feed Ore Base)

: Atmospheric Acid Leaching (AAL) Process using Hydrochloric Acid (HCl)

: 32 Months (20 Months for Construction)

: 20 Years

: Integrated Nickel AAL Processing System

- Raw Material Feeding System

- Indirect Heating Rotary Kiln System

- Purification System

- Slurry Leaching & HCl Recovery System

- Package Equipment
- Utility Facilities
- Building & Support Facility

Purification System

Summary of Key Features

- Technology Name: Nickel Atmospheric Acid Leaching (AAL) Process using Hydrochloric Acid (HCl)
- **Input Nickel Ore:** Laterite (Ni ± 1.3%)

Technical Features:

- Extraction of nickel using hydrochloric acid (HCl) at room temperature and pressure
- HCl produced within the process by heating magnesium chloride (MgCl₂), which is recycled, ensuring economic viability, handling, and process safety

Advantages:

- Lower investment cost compared to High-Pressure Acid Leaching (HPAL) process (50% lower in TIC)
- Lower energy consumption and emission
- Safer, easier, and more stable and flexible operation
- Production of high-value by-products (magnesium oxide, iron oxide, silica, etc.) maximizes the profits and reduces waste
- Environmentally friendly and waste-free process with Zero-Liquid Discharge (ZLD) technology

Comparison of Nickel Extraction Process

Process	Smelting	HPAL (High Pressure Acid Leach)	AAL (Atmospheric Acid Leaching using HCl)		
Raw Material	Sulfide ore	Laterite Ore	Laterite Ore		
Technology	Production of ferronickel by smelting / reduction process	Nickel concentrates by acid leaching at high temp. (250~270 °C), high press. (40~50 bar)	Nickel concentration and other product from waste at atmospheric pressure and normal temp. (AMB~80 °C)		
Process reduction → Melting furnace (>1,500 °C) Neutron Autor Autor Autor Neutron Neu		Nickel ore → Water mixing → Autoclave → Neutralization → Precipitation of sulfide metal → Autoclave → Solvent extraction → Autoclave (hydrogen reduction) → Ni powder	Nickel ore → Acid leaching → 1st purification → 2nd purification → Highly concentrated Ni, Nickel Hydroxide		
CAPEX	400	200	100		
Final Product	Fe-Ni	Ni metal	Nickel Hydroxide, Iron Oxide, SiO2, MgO		
Purity of final nickel related products	Fe-Ni: 20%	Nickel Metal: 99%	Nickel Hydroxide: > 90% Nickel Sulfate: 99.9%		
Key Features	Initial TIC: Very high Operating Power: Very High Operation Steps: Simple By-Products: Low	Initial TIC: High Operating Power: High Operation Steps: Complicate By-Products: Low	Initial TIC: Low Operating Power: Low Operation Steps: Simple By-Products: High		
Energy Consumption & Emissions	High	Middle	Low		
Wastewater & Waste	Fe-Ni Slag (>90% of feed) & Many wastewater	Many acidic wastewater	Waste-free process. ZLD (Zero Liquid Discharge)		

AAL Process Features in Comparison with HPAL

Atmospheric Acid Leaching using recycled Hydrochloric Acid process is superior to the HPAL process in terms of economy, safety, stability and flexibility of operation:

Cost Efficiency (Reduction of both CAPEX and OPEX)

- EPCC and O&M cost is much reduced. (e.g. The operational conditions of atmospheric pressure allow the use of FRP materials in the plant units while the HPAL methods necessitate titanium-coated material due to the high pressure involved.)

Operational Safety

- The HCl gas used for acid leaching is produced by Pyro-hydrolysis of MgCl₂. The HCl gas is recycled in the process under the negative pressure condition, ensuring operational safety. The recovery of HCl gas is very high (>99%), which saves cost.

Operational Flexibility

- By appropriately separating the iron oxide from the mixed metal chloride solution of iron and nickel, crude ferro-nickel can be produced for use as a raw material in the smelting process.

High Value Added By-Products

- High-value added by-products are produced from the process waste, and all the water used in the process is recycled within the system, which is both economical and environment-friendly.

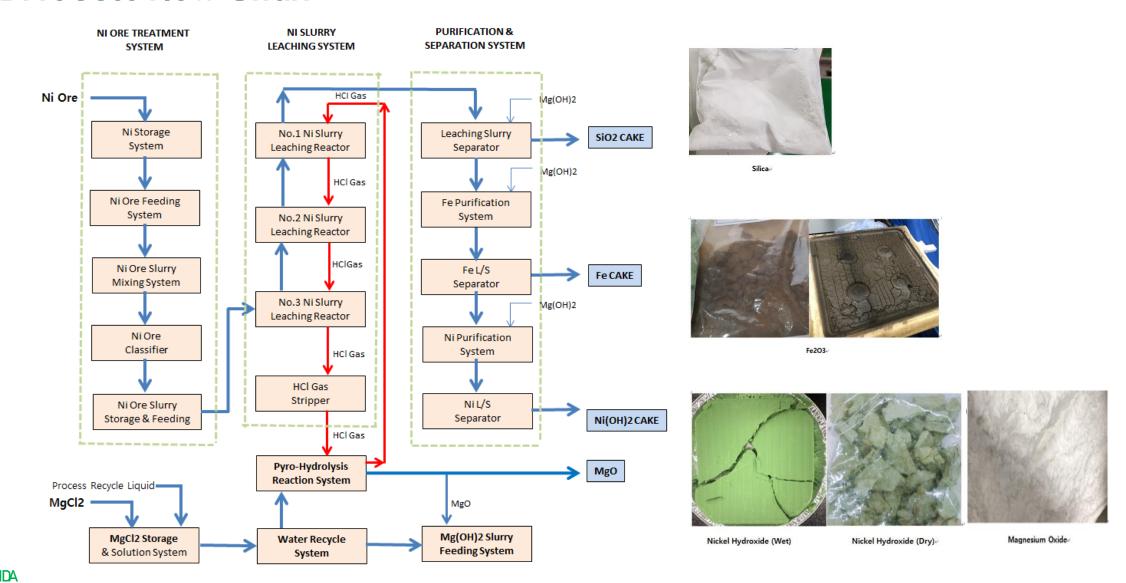
AAL Process Description

- Atmospheric Acid Leaching using recycled Hydrochloric Acid is a waste-free process that produces highnickel recovery rates (> 99%) and high-value by-products from waste as well as safe operation with atmospheric pressure operation.
- The process consists of 5 steps: 1) Pyro-hydrolysis of Magnesium Chloride, 2) Acid Leaching, 3) Phase Separation, 4) Purification of Iron oxide, and 5) Purification of Nickel hydroxide.
- STEP 1: Pyro-hydrolysis of MgCl₂ produces MgO (particle) and HCl (gas) by an Indirect Heating Continuous Rotary Kiln System.

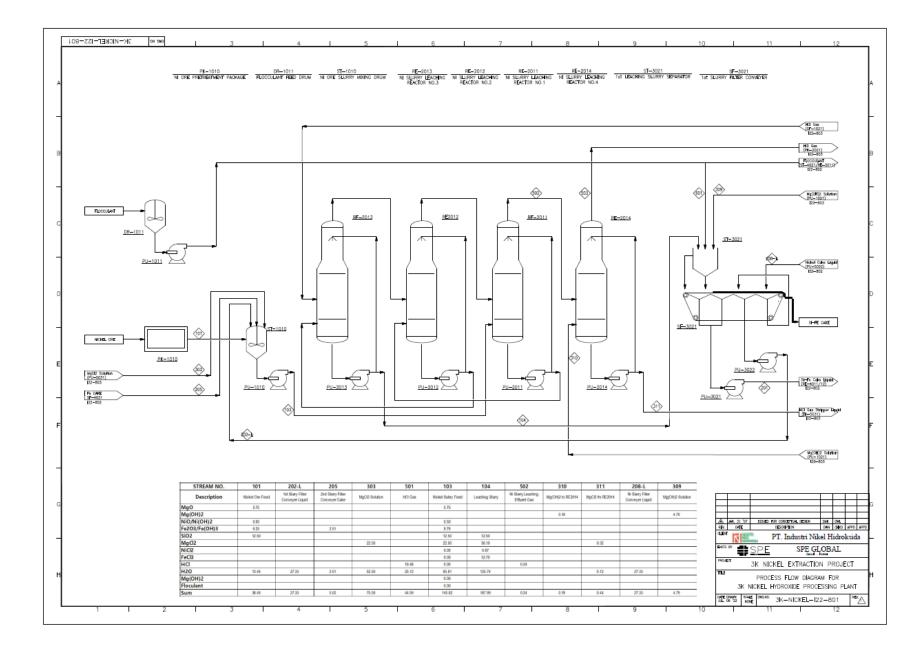
• The MgCl₂ required for HCl gas production is solid. After being put into the plant, it is dissolved in water and used as a MgCl₂ solution, ensuring ease of handling and safety. Additionally, the HCl gas generated from MgCl₂ is continuously circulated and reused. This results in a high recovery rate of HCl gas, and since the circulation process is in a negative pressure state, the risk of acid gas leakage is minimized, ensuring high operation safety. The Indirect Heating Rotary Kiln System, which can use various types of fuel such as gas, electricity, and coal, ensures there is no mixing with HCl gas with combustion gas.

AAL Process Description (Cont'd)

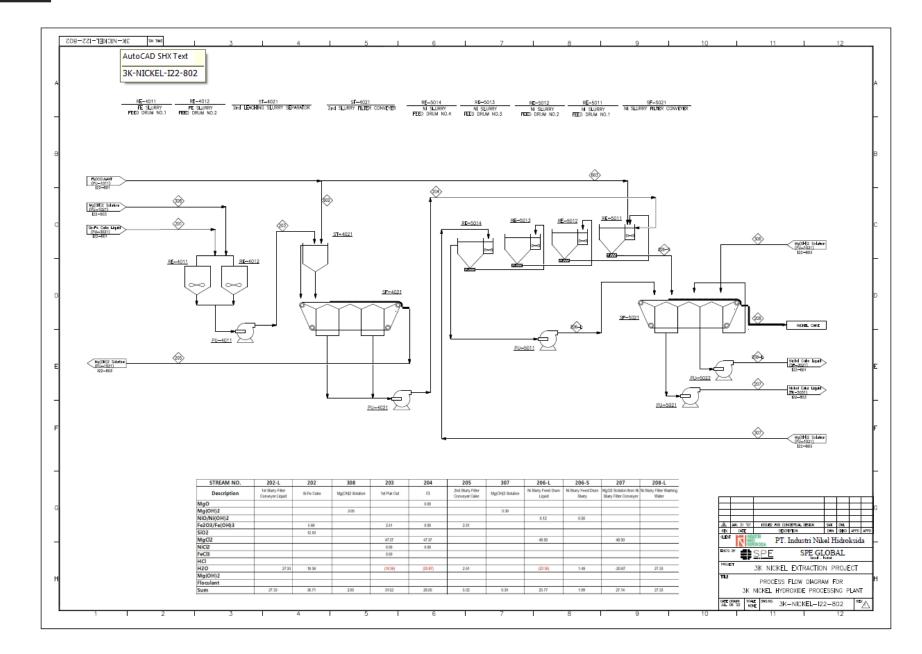
- STEP 2: Nickel ore is leached with HCl gas produced from Pyro-hydrolysis of MgCl₂. The raw material, nickel ore, is first crushed into particles of 100 microns using a ball mill crusher. It is then mixed with water and introduced into a scrubber type acid leaching tower through a nickel ore feeder, forming a metal chloride solution.
- STEP 3: Purification of Si/Fe oxide process. Most of silica and 70~80% of iron oxide is separated from the metal chloride solution by pH control.
- STEP 4: Iron oxide is separated from the metal chloride solution after the STEP 4.


$$MeCl_2$$
 (F1) \xrightarrow{MgO} Fe_2O_3 + $MeCl_2$ (CB-1)

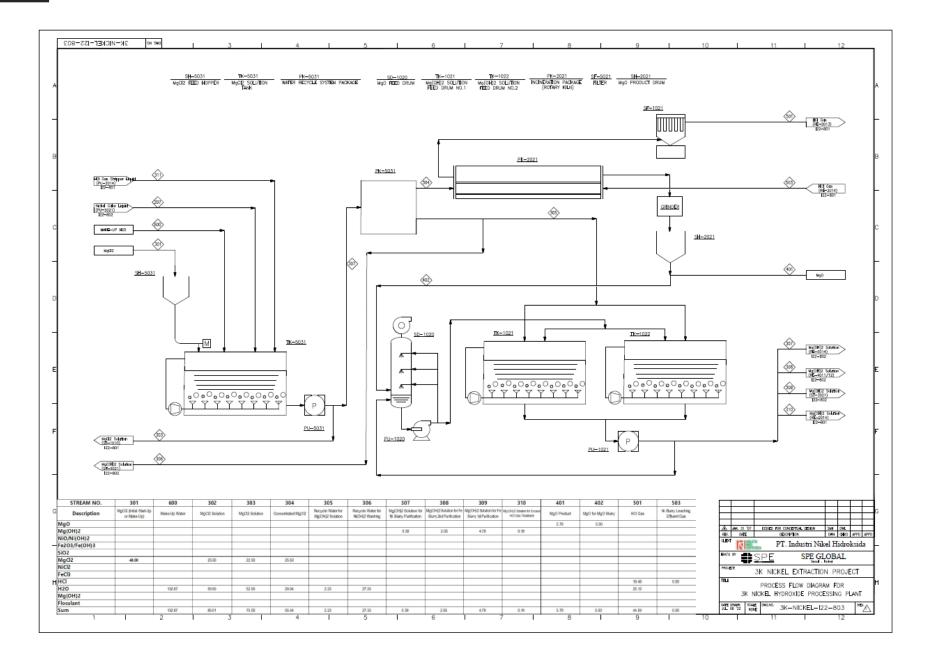
• STEP 5: Nickel hydroxide is separated from the metal chloride solution.


$$MeCl_2$$
 (CB-1) \longrightarrow $Ni(OH)_2$ + $MgCl_2$

AAL Process Flow Chart



PFD1

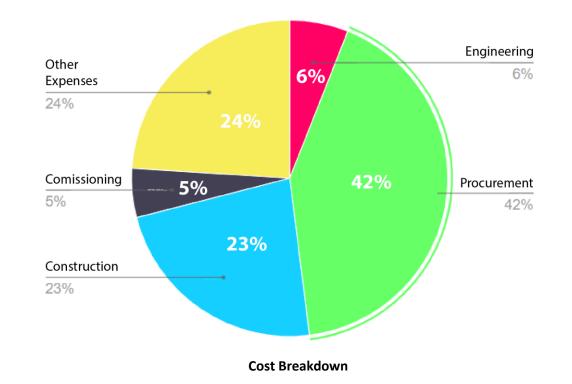


PFD2



PFD3

Plot Plan


CAPITAL & FINANCIAL DETAILS •

Project Cost Estimation

	ITEMS		COST [USD]		
	Engineering		6,350,000		
	Procurement		49,054,000		
EPCC	Construction		23,896,000		
	Commissioning		5,700,000		
		EPCC Total	85,000,000		

	COST [USD]	
	Government Permits & Licenses	450,000
	Plant Site Acquisition (If Required)	180,000
	Feasibility Study (Bankable)	500,000
Other Expenses	Permanent & Temporary Work by Owner Portion	8,870,000
	Working Capital	6,000,000
	IDC (2 years)	9,800,000
	Other Expenses Total	25,800,000

EPCC COST	85,000,000
TOTAL PROJECT COST	110,800,000

CAPITAL & FINANCIAL DETAILS

Financial Analysis

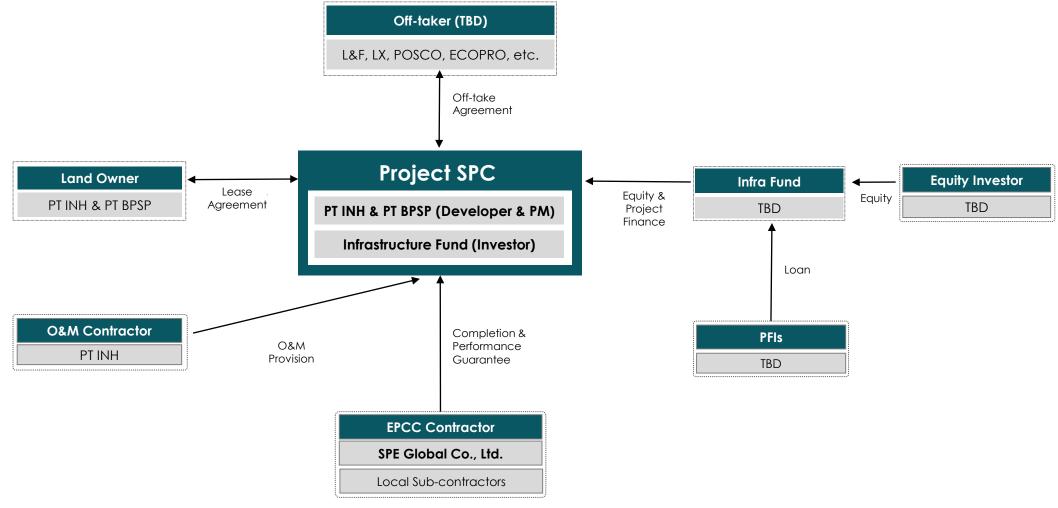
ITEM	Capacity	Selling Price (USD)	Revenue (USD)	ITEM	Unit Cost (USD) /Ni Ore Ton	Cost (USD)
A. REVENUE				B. OPEX		
1. Ni (Nickel Base)	4,000	14,000.00	56,000,000	1. Ni Ore	28	12,202,000
2. MgO	69,487	750.00	52,115,000	2. Utility (Electricity & Fuel) 13.2	9,548,000
3. SiO ₂	127,260	50.00	6,363,000	3. MgCl ₂ Cost	30.73	13,392,000
4. Fe ₂ O ₃	85,147	100.00	8,514,000	4. Labor	8.17	3,560,000
				5. Maintenance & Repair	5.45	2,375,000
				6. O&M Service	3.53	1,538,000
				7. Phase Separator & Chem	nicals 4.38	1,908,000
		REVENUE	122,992,000		EXPENDITURE	44.525.000

Financial Analysis based on 20 years operation with assumption of Revenue | OPEX annually and consider more facts such as Corporate Tax (25%), discount rate (7%), CR Premium (2.8%), Inflation (2%), WACC (5.2%), etc., with the following conclusion:

•	Project IRR (FCFF)		43.87%
•	Adjusted NPV	USD	381,640,000
•	Average EBITDA	USD	82,890,000

CAPITAL & FINANCIAL DETAILS •

Sensitivity Test


CASES	FCFF IRR	Avg. EBITDA (MMUSD)	Adj. NPV (MMUSD)	
Base Case	43.87%	82.89	381.64	
Increase Capital Cost				
by 30%	35.79%	82.89	345.97	
by 10%	40.79%	82.89	360.20	
Decrease Capital Cost				
by 10%	47.47%	82.89	374.42	
Feedstock Price				
up by 20%	42.81%	80.32	353.37	
down by 10%	44.40%	84.18	374.18	
Product Price (Ni)				
up by 10%	46.22%	88.81	398.68	
down by 10%	41.45%	76.98	335.94	
down by 20%	38.94%	71.06	304.56	
Operating Expanses				
increase by 10%	42.46%	79.48	349.12	
Eliminating Inflation Factor	42.50%	68.23	356.89	

Ni Content (WT, %)	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
FCFF IRR (%)	38.25	40.11	42.02	43.87	45.69	47.46	49.20	50.89	52.55	54.18	55.77

PROJECT STRUCTURE

Project Structure

PROJECT STRUCTURE

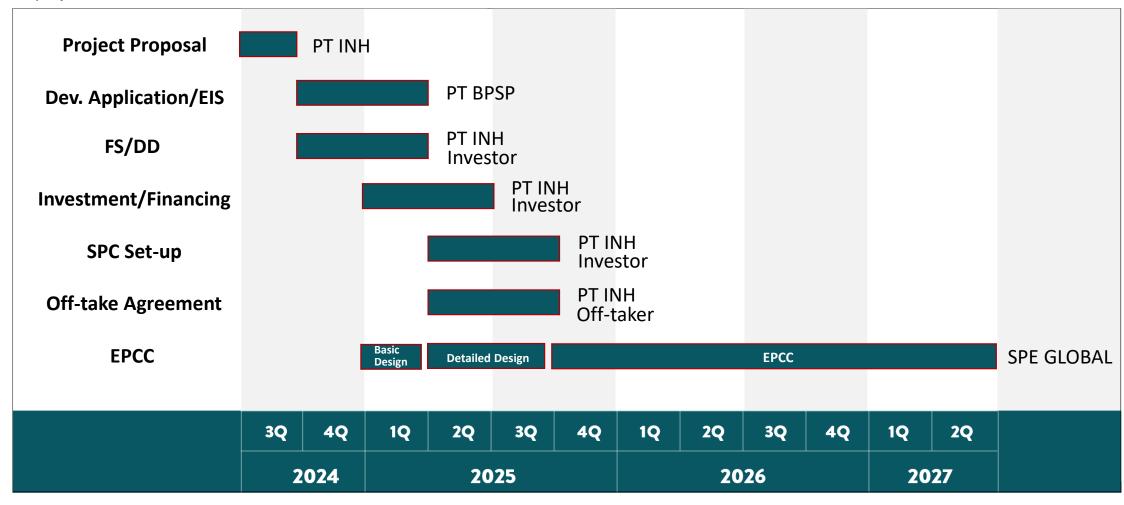
Major Stakeholders

PT. INH & PT. BPSP are the developers and PM for the project. As prominent energy companies, we possess extensive field experience in mineral mining and sales, PM, CM, and O&M for energy infrastructure projects. We also have expertise in various permits and operational capabilities in Indonesia.

- **PT. INH** leads the FS, DD, nickel-ore supply, off-take arrangements, financial arrangements, EPCC, and O&M for the project.
- **PT. BPSP** is responsible for local permits, approvals, and licenses for development, construction, and commissioning of the project.

Local nickel hydrometallurgy plants in Indonesia have faced serious production quality issues due to deficiencies in robust designs, skills, and expertise. We intend to solve these challenges with the involvement of a reputable and reliable Korean EPCC company. **SPE Global Co. Ltd.**, as the proposed EPCC contractor, possesses verified capabilities in chemical plant design, construction, and operation.

Currently, several equity investors (SIs/FIs/OIs), as well as PFIs, have shown interests for the Project, both in Indonesia and overseas. The terms and conditions of investment and financing will be negotiated in detail.


Additionally, interest in off-take agreements have been identified with prominent NCM battery manufacturers in Korea, Japan, Canada, U.S.A., etc.

PROJECT SCHEDULE

Project Timeline

The entire project period is proposed to be approximately 32 months. It is estimated that it will take 20 months from the start of construction to the commissioning of the Nickel AAL Processing Plant. Currently, part of development application and EIS has been processed, and the land clearing has been completed. Initial interests for off-take agreements, investment, and financing have been confirmed with potential participants of the project. The whole project schedule and lead time are as follows:

PT INH

We specialize in planning, development, implementation, and management of international energy infrastructure projects, delivering solutions with effective investment and financing strategies.

Global Market Entry Strategy

INDONESIA

ASEAN Middle East Australia

Strategic Investment & Advisory

Strategic Investment Investment Advisory

Strategic Project Development

Nickel AAL Processing Plant

Waste to Energy (W2E) Plant Green Hydrogen Plant Solar Farm ESS

Project Management (PM)

Energy Infrastructure Projects

RE100 Projects W2E Projects Real-estate/Logistics Projects

CORE CAPABILITIES AND EXPERTISE

Feasibility Studies

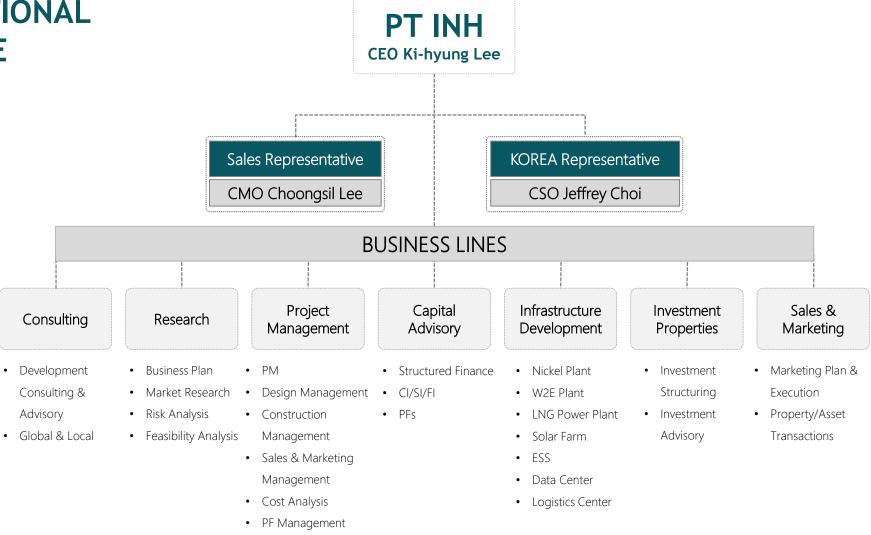
- Legal & administrative
- Physical & environmental
- Technical
- Financial
- Market

Project Structuring & Management

- Selection & management of participants
- Plan project execution & management
- Review of risks factors & hedging
- Execute & manage project schedule up to commissioning

Project Development & Planning

- Analysis on market trends & conditions
- Analysis on business environments
- Legal FS
- Financial FS



Finance Structuring

- Funding planning
- Financial feasibility analysis
- Financial terms negotiation
- Review & management of business & loan agreements
- Management of capital according to the funding plan

ORGANIZATIONAL STRUCTURE

SPE Global Co., Ltd.

As a specialized EPCC company in the field of Oil & Gas Plants, Petrochemical Plants, Chemical Plants, Power Plants, as well as Green Energy Plants, we offer top-notch EPCC services backed by decades of the field experience and expertise.

Engineering

Basic/Detail/Front-End Process/Mechanical Piping/Instrumentation/Electrical Civil/Structural

Procurement & Inspection

Vendors Qualification Quotation Technical Evaluation Expediting/Inspection

Construction & Commissioning

Construction Management Commissioning Start-up Operation O&M Revamp & Modification

Technical Support

Specialist & Engineer Support Construction/Operation Supervisor Technical Consultation Safety/Risk/HAZOP Assessment

CORE CAPABILITIES AND EXPERTISE

Total System Engineering Process

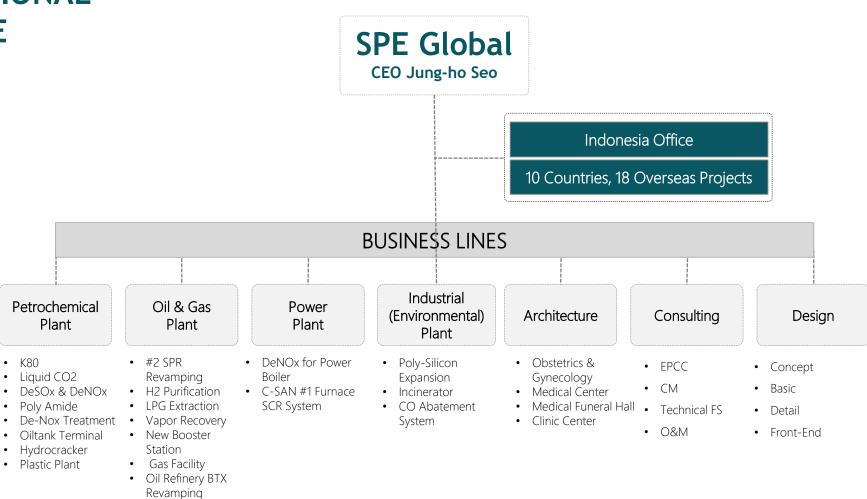
- Reliable Engineering & Procurement services
- Expertise on Procurement Control, Construction Supervision, Pre-Commissioning, Commissioning & Operation
- BDP (Basic Design Package) & FEED (Front-End Engineering Design)
- Package for Offsite & Utility System
- SmartPlant P&ID / 3D modeling
- HSE & QA/QC Management System

Specialties and Experiences in Plants

- Experiences in various types of Plant System
- Experiences and Know-How in construction
- Modular Engineering and Modular Fabrication
- Basic & Detailed Design Engineering Services

Optimal Design w/ ICT solutions

- Fast Track Schedule
- -- Indexes files on local and remote computer
- Rapid access to files through flexible querying
- EADDI (Engineering Application Design Data Integration) System
- SmartPlant P&ID
- 3D CAD



HSE(Health, Safety, Environment) Management

- Monitoring, Measurement, Records, Audit
- Risk Assessment and Management
- Consultation and Communication
- Operational Control and Reponse

ORGANIZATIONAL STRUCTURE

C2,LPG Extraction

CONFIDENTIAL

Disclaimer

By attending the meeting where this business presentation is made, or by reading this presentation slides, you agree to be bound by the following limitations:

The information in this document has been prepared by PT. INH (the "Company"). These materials contain statements about future events and expectations that are forward-looking statements. Any statement in these materials that is not a statement of historical fact is a forward-looking statement that involves known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements. None of the future projections, expectations, estimates or prospects in this presentation should be taken as forecasts or promises nor should they be taken as implying any indication, assurance or guarantee that the assumptions on which such future projections, expectations, estimates or prospects have been prepared are correct or exhaustive or, in the case of the assumptions, fully stated in the presentation. We assume no obligations to update the forward-looking statements contained herein to reflect actual results, changes in assumptions or changes in factors affecting these statements. This document and its contents are confidential and are being provided to you solely for your information and may not be retransmitted, further distributed to any other person or published, in whole or in part, by any medium or in any form for any purpose. The opinions presented herein are based on general information gathered at the time of writing and are subject to change without notice. The Company relies on information obtained from sources believed to be reliable but do not guarantee its accuracy or completeness.

This presentation does not constitute an offer or invitation to sell, or any solicitation of any offer to subscribe for or purchase any securities, and nothing contained herein shall form the basis of any contract or commitment whatsoever. No reliance may be placed for any purposes whatsoever on the information contained in this presentation or on its completeness, accuracy or fairness. The information in this presentation is subject to verification, completion and change. No representation or warranty, express or implied, is made or given by or on behalf of the Company or any of their respective shareholders, directors, officers or employees or any other person as to the accuracy, completeness or fairness of the information or opinions contained in this presentation. None of the Company or any of their respective shareholders, directors, officers or employees nor any other person accepts any liability (in negligence or otherwise) whatsoever for any loss howsoever arising from any use of this presentation or its contents or otherwise arising in connection therewith. In giving this presentation, neither the Company nor their respective advisers and/or agents undertake any obligation to provide the recipient with access to any additional information or to update this presentation or any additional information or to correct any inaccuracies in any such information which may become apparent. Unauthorized disclosure, distribution, copying, or use of any part or all of the information contained in this business presentation to third parties without our approval is strictly prohibited.

Transforming your Energy for Green and Sustainable Growth

Point of Contact:

Jeffrey Choi CSO, PT INH jchoi95@gmail.com

We value people, planet, prosperity, partnership, and peace for sustainable development. "Luceat Lux Vestra" Mt. 5:16